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Machine Learning in IR
• There is a lot of overlap between Machine Learning and 

Information Retrieval tasks. 

• ML focuses on making predictions in the face of uncertainty. If 
those predictions involve an IR task, you are using ML for IR. 

• Common applications include: 

‣ Ranking: Learning to Rank, etc. 

‣ Clustering: Grouping similar documents 

‣ Feature generation: e.g. Classifying documents by type 
(news, blogs, references, song lyrics, whatever)



but first, some probability…
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Random Experiments
• A random experiment is a 

process with some fixed set of 
possible outcomes, and whose 
outcomes are not deterministic 
(predictable). 

• The set of all possible 
outcomes of a random 
experiment is its sample 
space. 

• Each possible outcome has a 
non-negative probability of 
occurring. The sum of all 
outcomes’ probabilities is one.

Swiss archer William Tell teaches 
son probability theory



Random Events
• A random event is a subset of the 

sample space. Its probability is the 
sum of the probabilities of the 
outcomes it includes. 

‣ The entire sample space is a 
random event, with probability one. 

‣ Any single possible outcome is a 
random event. 

‣ “Nothing happening” is a random 
event, with probability zero. 

• Example: If your sample space is the 
set of all Internet documents a 
random event might be getting a 
particular search result.



Random Variables
• A random variable is a 

function from random events to 
numbers. 

• Suppose your random 
experiment is running a web 
search. 

‣ One discrete random 
variable is the total number 
of pages found. 

‣ One continuous random 
variable is the MAP of the 
resulting ranked list.



Expected Values
• Since the variable’s value depends 

on a random event, which has some 
probability of occurring, any 
possible value of a random variable 
has some probability of occurring. 

• The expected value of a random 
variable is the weighted sum of its 
possible values, where the weight is 
the probability of that value 
occurring. 

• If you repeated the experiment 
many times and took the mean of 
the random variable’s values, that 
mean will approach the expected 
value.

For discrete R.V. X with

possible outcomes {x1, x2, . . . },

E[X] =

X

i

xi · Pr(X = xi)

For continuous R.V. Y with

possible outcomes {y1, y2, . . . }
and density f(y),

E[Y ] =

Z 1

�1
yi · f(yi)dy



Expected Values
• The expected value of a fair die-roll is the mean face value: 3.5 

!

• In IR, AP is also the expected value of a random experiment: 
‣ Random experiment: Given a ranked list, select the rank k of a 

relevant document uniformly at random. 
‣ Random event: The rank k which was selected 
‣ Random variable: The precision at rank k 
‣ Expected value: The P@K value for each relevant document, 

multiplied by the change 1/R in R@K at that rank.

X

i

xi · Pr(X = xi) = 1 · 1/6 + 2 · 1/6 + 3 · 1/6 + 4 · 1/6 + 5 · 1/6 + 6 = 21/6

AP (~r,R) = 1/|R| ·
X

i:ri 6=0

P@k(~r, i)



Rules of Probability
• Random events are sets, and 

manipulated using set theory: 

‣ A given B: “I know the 
outcome is in B; is it in A?” 

!

‣ A or B: “any outcome which 
is in either set A or set B” 

!

‣ A and B: “any outcome 
which is in both A and B”

Pr(A _B) =
X

o:o2A_o2B

Pr(o)

= Pr(A) + Pr(B)� Pr(A ^B)

Pr(A ^B) =
X

o:o2A^o2B

Pr(o)

= Pr(B) + Pr(A|B)

Pr(A|B) =

P
o:o2A^o2B

Pr(o)P
o:o2B

Pr(o)



Bayes’ Rule
• Bayes’ Rule is a key 

element of probabilistic 
modeling. It tells you how 
to update your probability 
estimate in response to 
new data. 

• This allows you to start 
with a prior belief in A’s 
probability Pr(A) and 
calculate a posterior belief 
Pr(A|B) based on learning 
that B occurred.

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B)

Thomas Bayes



and now, on to…
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What is Machine Learning?
Machine Learning is a collection of 
methods for using data to select a 
model which can make decisions in 
the face of uncertainty. 

• The data could be anything: 
numbers, categories, time series, 
text, images, dates… 

• The models are mathematical 
functions which can be tuned 
through parameters. They are often 
conditional probability distributions. 

• The decisions are most often either 
predicting a number or predicting a 
category.

docid tf(tropical) tf(fish) tf(lincoln) Rel?
d1 5 10 0 Yes
d2 0 3 15 No
d3 7 0 0 Yes
d4 0 2 3 No

Data

X =

2

664

5 10 0
0 3 15
7 0 0
0 2 3

3

775 Y =

2

664

1
0
1
0

3

775

Decisions
Is

⇥
3 2 7

⇤
relevant?

Which documents are similar?



Data
• The data are generally treated as records drawn independently and 

identically distributed (IID) from a sample space. 

➡ You build a training set by drawing many records. 

➡ You may also build other collections at this time, e.g. a testing set to 
test predictions on data you didn’t train with. 

• The ability to make accurate predictions depends on whether your training 
data represents future records adequately. 

• Choosing better features and increasing the amount of training data often 
make a bigger difference in prediction quality than improving your learning 
algorithm. 

• What can go wrong with your data?



Data
• Your prediction quality is a direct result of how well the features you 

choose are correlated with the value you’re trying to predict (see 
Fano’s Inequality). 

• If your sample is too small, it can’t capture all the nuances (“black 
swan” events). 

• If your sample isn’t independent, it may overrepresent some type at 
the expense of some other type. 

• If the distribution of feature values changes over time, your training 
data may work now and not work later. 

➡ Does the average quality of Wikipedia content change over 
time? How does this affect the utility of a “page URL” feature?



Models
• A ML model is a mathematical function with 

appropriate domain (a record drawn from the sample 
space) and range (the type of value you’re trying to 
predict). 

• We generally use multivariate functions, where some 
variables (“parameters”, or  ) are chosen by the 
learning method and others are inputs from the data. 

➡ A linear model: 

➡ A probabilistic model:

✓

f(x,✓) =
X

i

✓i · xi

p(y|x,✓) = 1

1 + e
P

i ✓i·xi



Models
• All else being equal, a better model: 

➡ Is flexible – can adapt to different kinds of data. This is a tradeoff: if you 
have a lot of data, you can use a simple, flexible model. If you don’t, you 
often have to build more assumptions into the model to compensate. 

➡ Is parsimonious – uses few parameters. More parameters increase model 
flexibility. Too-flexible models memorize the training data, and don’t work on 
future data (“overfitting”). 

➡ Is efficiently trainable – you can mathematically prove that optimal 
parameters can be found, ideally in linear time in the number of training 
records. It’s even better if you can later efficiently update it with new records 
(“online” or “adaptive” models). 

➡ Is interpretable – reveals something about the relationship between data 
and predictions.



Error Functions
• In order to choose the best parameters, we need to 

mathematically define what “best” means. 

• We use an error function (aka loss function) to 
evaluate model predictions on certain data and 
parameters. 

➡ Sum squared error: 

➡ Log loss:

X

i

(f(xi,✓)� yi)
2

�
X

i

log p(yi|xi,✓)



Parameter Estimation
• Once you know your model (function) and have selected an error function, 

you’re ready to choose the best parameters. 

• There are many methods to choose from that vary in applicability, difficulty 
of implementation, and speed of convergence. 

➡ Analytic solutions: Lagrange multipliers 

➡ Matrix-based optimization: least squares, singular value decomposition 

➡ Sampling-based methods: Monte Carlo Markov Chains, Gibbs 
sampling 

➡ Probabilistic inference: Expectation Maximization (EM), variational 
inference



What is Machine Learning?
“Machine Learning is a collection of methods for using data to select a 
model which can make decisions in the face of uncertainty.” 

Now we can say what it means to select a model. First, the analyst chooses: 

• A set of features to represent the data 

• A model (function) which maps a feature vector to a prediction value, 
given some parameters 

• An error/loss function to tell you the quality of some particular parameters 

• A parameter estimation method to select the ideal parameters 

The estimation method then finds parameters that minimize the error 
function, given some training data.



Is Machine Learning Hard?
• It depends on what you want to do. The easy parts: 

‣ There are many ML libraries you can download and run without needing to 
know their details. 

‣ Many ML algorithms are simple to implement. 

• The hard parts: 

‣ Developing a broad knowledge of ML methods, and when to use which. 

‣ Devising a custom model and parameter estimation method that outperforms 
out-of-the-box methods for your data or task. 

‣ Improving the state of the art in accuracy and speed of parameter estimation 
methods. 

‣ (Sometimes) Reading the under-explained math notation in ML papers :)



Let’s look at the main ML task used for IR.



Classification
Classification means choosing the 
correct label for a document. 

‣ Binary Classification uses just two 
labels. You often choose based on 
whether the model output exceeds 
some threshold. (e.g. relevant or not) 

‣ Multi-class Classification uses more 
than two labels. One way is to train a 
binary classifier for each label and 
pick the one with the highest 
predicted value. (e.g. relevance 
grades) 

‣ Multi-label Classification can apply 
multiple labels to the same document. 
(Less useful for our task.)

docid tf(tropical) tf(fish) tf(lincoln) Rel?
d1 5 10 0 Yes
d2 0 3 15 No
d3 7 0 0 Yes
d4 0 2 3 No

Data

X =

2
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5 10 0
0 3 15
7 0 0
0 2 3
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Binary Classification
• Let’s see an example of binary 

classification in IR. 

• We will train a classifier to 
predict whether a new 
document is relevant to a 
particular query. 

• Our features are term 
frequency counts for our 
three-word vocabulary. 

• We have four training 
examples.

docid tf(tropical) tf(fish) tf(lincoln) Rel?
d1 5 10 0 Yes
d2 0 3 15 No
d3 7 0 0 Yes
d4 0 2 3 No

Data

X =

2

664

5 10 0
0 3 15
7 0 0
0 2 3

3
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Binary Classification
• We will use a method called logistic 

regression. 

• Our model, shown on the right, is an 
exponential function of a linear 
combination of features. 

• When the sum is a lot less than zero, 
the prediction is nearly zero. When it’s 
a lot more, the prediction is nearly 
one. 

• The parameters choose how quickly 
the transition from zero to one occurs, 
and which features matter more. 

• We will use log loss for our error 
function.

Error Function

Model
p(y|x,✓) = 1

1 + e
P

i ✓i·xi

�
X

i

log p(yi|xi,✓)



Binary Classification
• After we fit the data, we get the 

parameters: 

!

• Feature one is evidence for 
relevance, three evidence 
against, and two more or less 
neutral. 

• You can see the predicted value 
for each training record, and the 
total log loss on the right. 

• Why isn’t this perfect?

Predictions for Data

X =

2

664

5 10 0
0 3 15
7 0 0
0 2 3

3

775

Log Loss

✓ ⇡
⇥
0.478 0.079 �0.534

⇤
Ŷ ⇡

2

664

0.490
0.269
0.491
0.308

3

775

�
X

i

lg Ŷi

⇡ 1.028 + 1.894 + 1.024 + 1.698

= 5.644



and now, IR at last
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Learning to Rank
• A key challenge in IR is 

combining evidence from 
multiple sources to produce a 
quality document ranking. 

• Making predictions from 
different features is a natural 
setting for ML research, and 
dozens of methods have been 
developed. 

• These methods are 
collectively known as 
Learning to Rank methods.

BM25

Topic Models

Page category

PageRank

Spam Score

Ranking

LtR



Ranking as Classification
• There are a lot of ways to cast ranking as a classification 

problem. The three general approaches are: 

‣ Pointwise: predict the relevance grade for each 
document 

‣ Pairwise: given two documents, predict which is more 
relevant 

‣ Listwise: predict a relevance grade for each 
document, then optimize for some metric of the 
implied ranking



Pointwise LtR
• Document features are combined into a feature vector, and standard ML 

techniques are used to predict a relevance grade. 

• Advantages: 

‣ Easy to implement: can use out-of-the-box methods (though tailored 
methods also exist) 

‣ Easy to interpret: you can look at mistakes on a document-by-
document basis 

• Disadvantages: 

‣ Ignores the list structure of ranking (which is the final output) 

‣ Hard to map goal onto evaluation measures (MAP, NDCG, etc.)



Example: OC SVM
• Support Vector Machines are a 

standard ML technique which 
find support vectors to 
separate your data. 

• Support vectors are tangent to 
hyperplanes that are between 
data points of different classes, 
and as far as possible from 
those points. 

• In SVM for Ordinal 
Classification, we search for 
parallel hyperplanes to 
establish the relevance grades.

Shapes represent documents 
w is the support vector 

The bold lines are the hyperplanes



Pointwise Methods
• Example methods for further reading: 

‣ Prank – Pranking with Ranking, NIPS 2001 

‣ OC SVM – Ranking with large margin principle: Two 
approaches, NIPS 2002 

‣ Subset Ranking – Subset Ranking using Regression, 
COLT 2006 

‣ McRank – McRank: Learning to rank using multiple 
classification and gradient boosting, NIPS 2007



Pairwise LtR
• Features represent a pair of documents, rather than a single document. 

(For instance, use difference between individual document features.) 

• Ranking is done using a sorting algorithm, with pairwise classification 
used to compare docs. 

• Advantages: 

‣ Works better than Pointwise in many cases 

‣ Can distinguish between documents which Pointwise would assign to 
the same class 

• Disadvantages: 

‣ Often no direct relationship to IR evaluation measures



Example: Ranking SVM
• Given a document collection 

with relevance grades, you 
form pairwise data by 
choosing pairs of documents 
with different relevance 
grades and subtracting the 
features of one from the other. 

• If the subtracted document 
has a smaller grade, the label 
is +; otherwise, it is -.

Ranking for two queries

Transformed to pairwise classification



Pairwise Methods
• Example methods for further reading: 

‣ Ranking SVM – Large Margin Rank Boundaries for Ordinal Regression, MIT 
Press 2000 

‣ RankBoost – An efficient boosting algorithm for combining preferences, 
JMLR 2003 

‣ RankNet – Learning to rank using gradient descent, ICML 2005 

‣ LambdaRank – Learning to rank with nonsmooth cost functions, NIPS 2006 

‣ GBRank – A general boosting method and its application to learning 
ranking functions for web search, NIPS 2008 

‣ LambdaMART – Adapting boosting for information retrieval measures, IR 
2010



Listwise LtR
• This approach trains using the ranking directly, instead of training on documents or 

pairs and inferring a ranking. 

• Advantages: 

‣ You are learning with the object you ultimately want 

‣ You can optimize directly for evaluation measures (MAP, NDCG, etc.) 

‣ Often outperforms Pointwise and Pairwise (at least, for the target measure) 

• Disadvantages: 

‣ Evaluation measures are typically non-smooth and non-differentiable, so most 
parameter estimation techniques don’t work. 

‣ Optimizing for one measure doesn’t mean you do well on others. Which do you 
pick?



Example: SVM MAP
• SVM MAP directly optimizes for mean average precision 

• It does this using a error function tailored for MAP 

‣ A ranking is a permutation    of the documents 

‣ For two permutations     and    , 

!

• The problem: there is an exponential number of 
permutations;  this creates an exponential number of 
optimization constraints.

⇡

⇡i ⇡j

map(⇡i) > map(⇡j) =) err(⇡i) < err(⇡j)



Example: SVM MAP
• To solve this, SVM MAP uses a working set of constraints: 

1. Train a model on current working set of constraints. 

2. Use this model to find the most violated constraint not 
currently in the working set. 

3. If this constraint is more violated than the most 
violated constraint in the working set, add it to the 
working set and start over. 

• This is proven to loop for at most a polynomial number of 
iterations.



Listwise Methods
• Example methods for further reading: 

‣ ListNet – Learning to rank: from pairwise approach to listwise 
approach, ICML 2007 

‣ AdaRank – AdaRank: a boosting algorithm for information retrieval, 
SIGIR 2007 

‣ SVM MAP – A support vector method for optimizing average precision, 
SIGIR 2007 

‣ ListMLE – Listwise approach to learning to rank: theory and algorithm, 
ICML 2008 

‣ Soft-Rank – Soft-Rank: optimizing non-smooth rank metrics, WSDM 
2008



Comparing Approaches
Listwise > Pairwise > Pointwise > BM25… this time. 

Data from 2003.
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The Importance of Features
• The primary motivation behind developing learning to rank 

algorithms is to combine the wealth of features available for 
ranking. 

• Many of these algorithms are very good at selecting the more 
useful features and ignoring less useful ones. 

• In Machine Learning, choosing good features is critical to 
achieving good learning performance. Your features comprise all 
the information your model has from which to infer document 
relevance.



Feature Types
• Commercial search engines use hundreds of features for search. 

These are generated for a (document, query) pair and include: 

‣ Text Match – how well the text of the document and query 
match each other, e.g. BM25 score. 

‣ Topical Matching – how well the topic of the document and 
query match each other. 

‣ Web Graph features – graph-theoretic properties of a page, 
such as its PageRank, number of in-links, etc. 

‣ Document Statistics – number of words in different types of 
tags, number of slashes in URL, etc.



More Feature Types
‣ Document Classifier – document categories: spam, language, 

news, adult content, page quality, etc.  

‣ Click Data – probability of click, probability of skipping it, dwell 
time, click count, etc. 

‣ External References – supporting evidence from other sites, 
such as Delicious tags, Facebook likes, etc. (Is this page 
trending right now?) 

‣ Time – page freshness, date of first appearance on web, update 
frequency, etc. 

• Aside: BM25 on its own doesn’t do that well. All these other features 
are one huge difference between your project two and Bing.



Summary
• Here are some good summary papers and tutorials on LtR. 

‣ A Short Introduction to Learning to Rank. Hang Li, 2011. 

‣ Learning to Rank for Information Retrieval. Tie-Yan Liu, 2008. 

‣ From RankNet to LambdaRank to LambdaMART: An 
Overview. Christopher J.C. Burges, 2010. 

‣ The whens and hows of learning to rank for web search. 
Craig Macdonald, 2012. 

‣ Yahoo! Learning to Rank Challenge Overview. Olivier 
Chapelle, Yi Chang, 2011.


