
CS6200
Information Retrieval

Jesse Anderton
College of Computer and Information Science

Northeastern University

Machine Learning in IR
• There is a lot of overlap between Machine Learning and

Information Retrieval tasks.

• ML focuses on making predictions in the face of uncertainty. If
those predictions involve an IR task, you are using ML for IR.

• Common applications include:

‣ Ranking: Learning to Rank, etc.

‣ Clustering: Grouping similar documents

‣ Feature generation: e.g. Classifying documents by type
(news, blogs, references, song lyrics, whatever)

but first, some probability…

Probability

Probability | Machine Learning
Learning to Rank | Features for Ranking

Random Experiments
• A random experiment is a

process with some fixed set of
possible outcomes, and whose
outcomes are not deterministic
(predictable).

• The set of all possible
outcomes of a random
experiment is its sample
space.

• Each possible outcome has a
non-negative probability of
occurring. The sum of all
outcomes’ probabilities is one.

Swiss archer William Tell teaches
son probability theory

Random Events
• A random event is a subset of the

sample space. Its probability is the
sum of the probabilities of the
outcomes it includes.

‣ The entire sample space is a
random event, with probability one.

‣ Any single possible outcome is a
random event.

‣ “Nothing happening” is a random
event, with probability zero.

• Example: If your sample space is the
set of all Internet documents a
random event might be getting a
particular search result.

Random Variables
• A random variable is a

function from random events to
numbers.

• Suppose your random
experiment is running a web
search.

‣ One discrete random
variable is the total number
of pages found.

‣ One continuous random
variable is the MAP of the
resulting ranked list.

Expected Values
• Since the variable’s value depends

on a random event, which has some
probability of occurring, any
possible value of a random variable
has some probability of occurring.

• The expected value of a random
variable is the weighted sum of its
possible values, where the weight is
the probability of that value
occurring.

• If you repeated the experiment
many times and took the mean of
the random variable’s values, that
mean will approach the expected
value.

For discrete R.V. X with

possible outcomes {x1, x2, . . . },

E[X] =

X

i

xi · Pr(X = xi)

For continuous R.V. Y with

possible outcomes {y1, y2, . . . }
and density f(y),

E[Y] =

Z 1

�1
yi · f(yi)dy

Expected Values
• The expected value of a fair die-roll is the mean face value: 3.5

!

• In IR, AP is also the expected value of a random experiment:
‣ Random experiment: Given a ranked list, select the rank k of a

relevant document uniformly at random.
‣ Random event: The rank k which was selected
‣ Random variable: The precision at rank k
‣ Expected value: The P@K value for each relevant document,

multiplied by the change 1/R in R@K at that rank.

X

i

xi · Pr(X = xi) = 1 · 1/6 + 2 · 1/6 + 3 · 1/6 + 4 · 1/6 + 5 · 1/6 + 6 = 21/6

AP (~r,R) = 1/|R| ·
X

i:ri 6=0

P@k(~r, i)

Rules of Probability
• Random events are sets, and

manipulated using set theory:

‣ A given B: “I know the
outcome is in B; is it in A?”

!

‣ A or B: “any outcome which
is in either set A or set B”

!

‣ A and B: “any outcome
which is in both A and B”

Pr(A _B) =
X

o:o2A_o2B

Pr(o)

= Pr(A) + Pr(B)� Pr(A ^B)

Pr(A ^B) =
X

o:o2A^o2B

Pr(o)

= Pr(B) + Pr(A|B)

Pr(A|B) =

P
o:o2A^o2B

Pr(o)P
o:o2B

Pr(o)

Bayes’ Rule
• Bayes’ Rule is a key

element of probabilistic
modeling. It tells you how
to update your probability
estimate in response to
new data.

• This allows you to start
with a prior belief in A’s
probability Pr(A) and
calculate a posterior belief
Pr(A|B) based on learning
that B occurred.

Pr(A|B) =
Pr(B|A)Pr(A)

Pr(B)

Thomas Bayes

and now, on to…

Machine Learning

Probability | Machine Learning
Learning to Rank | Features for Ranking

What is Machine Learning?
Machine Learning is a collection of
methods for using data to select a
model which can make decisions in
the face of uncertainty.

• The data could be anything:
numbers, categories, time series,
text, images, dates…

• The models are mathematical
functions which can be tuned
through parameters. They are often
conditional probability distributions.

• The decisions are most often either
predicting a number or predicting a
category.

docid tf(tropical) tf(fish) tf(lincoln) Rel?
d1 5 10 0 Yes
d2 0 3 15 No
d3 7 0 0 Yes
d4 0 2 3 No

Data

X =

2

664

5 10 0
0 3 15
7 0 0
0 2 3

3

775 Y =

2

664

1
0
1
0

3

775

Decisions
Is

⇥
3 2 7

⇤
relevant?

Which documents are similar?

Data
• The data are generally treated as records drawn independently and

identically distributed (IID) from a sample space.

➡ You build a training set by drawing many records.

➡ You may also build other collections at this time, e.g. a testing set to
test predictions on data you didn’t train with.

• The ability to make accurate predictions depends on whether your training
data represents future records adequately.

• Choosing better features and increasing the amount of training data often
make a bigger difference in prediction quality than improving your learning
algorithm.

• What can go wrong with your data?

Data
• Your prediction quality is a direct result of how well the features you

choose are correlated with the value you’re trying to predict (see
Fano’s Inequality).

• If your sample is too small, it can’t capture all the nuances (“black
swan” events).

• If your sample isn’t independent, it may overrepresent some type at
the expense of some other type.

• If the distribution of feature values changes over time, your training
data may work now and not work later.

➡ Does the average quality of Wikipedia content change over
time? How does this affect the utility of a “page URL” feature?

Models
• A ML model is a mathematical function with

appropriate domain (a record drawn from the sample
space) and range (the type of value you’re trying to
predict).

• We generally use multivariate functions, where some
variables (“parameters”, or) are chosen by the
learning method and others are inputs from the data.

➡ A linear model:

➡ A probabilistic model:

✓

f(x,✓) =
X

i

✓i · xi

p(y|x,✓) = 1

1 + e
P

i ✓i·xi

Models
• All else being equal, a better model:

➡ Is flexible – can adapt to different kinds of data. This is a tradeoff: if you
have a lot of data, you can use a simple, flexible model. If you don’t, you
often have to build more assumptions into the model to compensate.

➡ Is parsimonious – uses few parameters. More parameters increase model
flexibility. Too-flexible models memorize the training data, and don’t work on
future data (“overfitting”).

➡ Is efficiently trainable – you can mathematically prove that optimal
parameters can be found, ideally in linear time in the number of training
records. It’s even better if you can later efficiently update it with new records
(“online” or “adaptive” models).

➡ Is interpretable – reveals something about the relationship between data
and predictions.

Error Functions
• In order to choose the best parameters, we need to

mathematically define what “best” means.

• We use an error function (aka loss function) to
evaluate model predictions on certain data and
parameters.

➡ Sum squared error:

➡ Log loss:

X

i

(f(xi,✓)� yi)
2

�
X

i

log p(yi|xi,✓)

Parameter Estimation
• Once you know your model (function) and have selected an error function,

you’re ready to choose the best parameters.

• There are many methods to choose from that vary in applicability, difficulty
of implementation, and speed of convergence.

➡ Analytic solutions: Lagrange multipliers

➡ Matrix-based optimization: least squares, singular value decomposition

➡ Sampling-based methods: Monte Carlo Markov Chains, Gibbs
sampling

➡ Probabilistic inference: Expectation Maximization (EM), variational
inference

What is Machine Learning?
“Machine Learning is a collection of methods for using data to select a
model which can make decisions in the face of uncertainty.”

Now we can say what it means to select a model. First, the analyst chooses:

• A set of features to represent the data

• A model (function) which maps a feature vector to a prediction value,
given some parameters

• An error/loss function to tell you the quality of some particular parameters

• A parameter estimation method to select the ideal parameters

The estimation method then finds parameters that minimize the error
function, given some training data.

Is Machine Learning Hard?
• It depends on what you want to do. The easy parts:

‣ There are many ML libraries you can download and run without needing to
know their details.

‣ Many ML algorithms are simple to implement.

• The hard parts:

‣ Developing a broad knowledge of ML methods, and when to use which.

‣ Devising a custom model and parameter estimation method that outperforms
out-of-the-box methods for your data or task.

‣ Improving the state of the art in accuracy and speed of parameter estimation
methods.

‣ (Sometimes) Reading the under-explained math notation in ML papers :)

Let’s look at the main ML task used for IR.

Classification
Classification means choosing the
correct label for a document.

‣ Binary Classification uses just two
labels. You often choose based on
whether the model output exceeds
some threshold. (e.g. relevant or not)

‣ Multi-class Classification uses more
than two labels. One way is to train a
binary classifier for each label and
pick the one with the highest
predicted value. (e.g. relevance
grades)

‣ Multi-label Classification can apply
multiple labels to the same document.
(Less useful for our task.)

docid tf(tropical) tf(fish) tf(lincoln) Rel?
d1 5 10 0 Yes
d2 0 3 15 No
d3 7 0 0 Yes
d4 0 2 3 No

Data

X =

2

664

5 10 0
0 3 15
7 0 0
0 2 3

3

775 Y =

2

664

1
0
1
0

3

775

Classification

Is
⇥
3 2 7

⇤
relevant?

Binary Classification
• Let’s see an example of binary

classification in IR.

• We will train a classifier to
predict whether a new
document is relevant to a
particular query.

• Our features are term
frequency counts for our
three-word vocabulary.

• We have four training
examples.

docid tf(tropical) tf(fish) tf(lincoln) Rel?
d1 5 10 0 Yes
d2 0 3 15 No
d3 7 0 0 Yes
d4 0 2 3 No

Data

X =

2

664

5 10 0
0 3 15
7 0 0
0 2 3

3

775 Y =

2

664

1
0
1
0

3

775

Decision
Is

⇥
3 2 7

⇤
relevant?

Binary Classification
• We will use a method called logistic

regression.

• Our model, shown on the right, is an
exponential function of a linear
combination of features.

• When the sum is a lot less than zero,
the prediction is nearly zero. When it’s
a lot more, the prediction is nearly
one.

• The parameters choose how quickly
the transition from zero to one occurs,
and which features matter more.

• We will use log loss for our error
function.

Error Function

Model
p(y|x,✓) = 1

1 + e
P

i ✓i·xi

�
X

i

log p(yi|xi,✓)

Binary Classification
• After we fit the data, we get the

parameters:

!

• Feature one is evidence for
relevance, three evidence
against, and two more or less
neutral.

• You can see the predicted value
for each training record, and the
total log loss on the right.

• Why isn’t this perfect?

Predictions for Data

X =

2

664

5 10 0
0 3 15
7 0 0
0 2 3

3

775

Log Loss

✓ ⇡
⇥
0.478 0.079 �0.534

⇤
Ŷ ⇡

2

664

0.490
0.269
0.491
0.308

3

775

�
X

i

lg Ŷi

⇡ 1.028 + 1.894 + 1.024 + 1.698

= 5.644

and now, IR at last

Learning to Rank

Probability | Machine Learning
Learning to Rank | Features for Ranking

Learning to Rank
• A key challenge in IR is

combining evidence from
multiple sources to produce a
quality document ranking.

• Making predictions from
different features is a natural
setting for ML research, and
dozens of methods have been
developed.

• These methods are
collectively known as
Learning to Rank methods.

BM25

Topic Models

Page category

PageRank

Spam Score

Ranking

LtR

Ranking as Classification
• There are a lot of ways to cast ranking as a classification

problem. The three general approaches are:

‣ Pointwise: predict the relevance grade for each
document

‣ Pairwise: given two documents, predict which is more
relevant

‣ Listwise: predict a relevance grade for each
document, then optimize for some metric of the
implied ranking

Pointwise LtR
• Document features are combined into a feature vector, and standard ML

techniques are used to predict a relevance grade.

• Advantages:

‣ Easy to implement: can use out-of-the-box methods (though tailored
methods also exist)

‣ Easy to interpret: you can look at mistakes on a document-by-
document basis

• Disadvantages:

‣ Ignores the list structure of ranking (which is the final output)

‣ Hard to map goal onto evaluation measures (MAP, NDCG, etc.)

Example: OC SVM
• Support Vector Machines are a

standard ML technique which
find support vectors to
separate your data.

• Support vectors are tangent to
hyperplanes that are between
data points of different classes,
and as far as possible from
those points.

• In SVM for Ordinal
Classification, we search for
parallel hyperplanes to
establish the relevance grades.

Shapes represent documents
w is the support vector

The bold lines are the hyperplanes

Pointwise Methods
• Example methods for further reading:

‣ Prank – Pranking with Ranking, NIPS 2001

‣ OC SVM – Ranking with large margin principle: Two
approaches, NIPS 2002

‣ Subset Ranking – Subset Ranking using Regression,
COLT 2006

‣ McRank – McRank: Learning to rank using multiple
classification and gradient boosting, NIPS 2007

Pairwise LtR
• Features represent a pair of documents, rather than a single document.

(For instance, use difference between individual document features.)

• Ranking is done using a sorting algorithm, with pairwise classification
used to compare docs.

• Advantages:

‣ Works better than Pointwise in many cases

‣ Can distinguish between documents which Pointwise would assign to
the same class

• Disadvantages:

‣ Often no direct relationship to IR evaluation measures

Example: Ranking SVM
• Given a document collection

with relevance grades, you
form pairwise data by
choosing pairs of documents
with different relevance
grades and subtracting the
features of one from the other.

• If the subtracted document
has a smaller grade, the label
is +; otherwise, it is -.

Ranking for two queries

Transformed to pairwise classification

Pairwise Methods
• Example methods for further reading:

‣ Ranking SVM – Large Margin Rank Boundaries for Ordinal Regression, MIT
Press 2000

‣ RankBoost – An efficient boosting algorithm for combining preferences,
JMLR 2003

‣ RankNet – Learning to rank using gradient descent, ICML 2005

‣ LambdaRank – Learning to rank with nonsmooth cost functions, NIPS 2006

‣ GBRank – A general boosting method and its application to learning
ranking functions for web search, NIPS 2008

‣ LambdaMART – Adapting boosting for information retrieval measures, IR
2010

Listwise LtR
• This approach trains using the ranking directly, instead of training on documents or

pairs and inferring a ranking.

• Advantages:

‣ You are learning with the object you ultimately want

‣ You can optimize directly for evaluation measures (MAP, NDCG, etc.)

‣ Often outperforms Pointwise and Pairwise (at least, for the target measure)

• Disadvantages:

‣ Evaluation measures are typically non-smooth and non-differentiable, so most
parameter estimation techniques don’t work.

‣ Optimizing for one measure doesn’t mean you do well on others. Which do you
pick?

Example: SVM MAP
• SVM MAP directly optimizes for mean average precision

• It does this using a error function tailored for MAP

‣ A ranking is a permutation of the documents

‣ For two permutations and ,

!

• The problem: there is an exponential number of
permutations; this creates an exponential number of
optimization constraints.

⇡

⇡i ⇡j

map(⇡i) > map(⇡j) =) err(⇡i) < err(⇡j)

Example: SVM MAP
• To solve this, SVM MAP uses a working set of constraints:

1. Train a model on current working set of constraints.

2. Use this model to find the most violated constraint not
currently in the working set.

3. If this constraint is more violated than the most
violated constraint in the working set, add it to the
working set and start over.

• This is proven to loop for at most a polynomial number of
iterations.

Listwise Methods
• Example methods for further reading:

‣ ListNet – Learning to rank: from pairwise approach to listwise
approach, ICML 2007

‣ AdaRank – AdaRank: a boosting algorithm for information retrieval,
SIGIR 2007

‣ SVM MAP – A support vector method for optimizing average precision,
SIGIR 2007

‣ ListMLE – Listwise approach to learning to rank: theory and algorithm,
ICML 2008

‣ Soft-Rank – Soft-Rank: optimizing non-smooth rank metrics, WSDM
2008

Comparing Approaches
Listwise > Pairwise > Pointwise > BM25… this time.

Data from 2003.

Features for Ranking

Probability | Machine Learning
Learning to Rank | Features for Ranking

The Importance of Features
• The primary motivation behind developing learning to rank

algorithms is to combine the wealth of features available for
ranking.

• Many of these algorithms are very good at selecting the more
useful features and ignoring less useful ones.

• In Machine Learning, choosing good features is critical to
achieving good learning performance. Your features comprise all
the information your model has from which to infer document
relevance.

Feature Types
• Commercial search engines use hundreds of features for search.

These are generated for a (document, query) pair and include:

‣ Text Match – how well the text of the document and query
match each other, e.g. BM25 score.

‣ Topical Matching – how well the topic of the document and
query match each other.

‣ Web Graph features – graph-theoretic properties of a page,
such as its PageRank, number of in-links, etc.

‣ Document Statistics – number of words in different types of
tags, number of slashes in URL, etc.

More Feature Types
‣ Document Classifier – document categories: spam, language,

news, adult content, page quality, etc.

‣ Click Data – probability of click, probability of skipping it, dwell
time, click count, etc.

‣ External References – supporting evidence from other sites,
such as Delicious tags, Facebook likes, etc. (Is this page
trending right now?)

‣ Time – page freshness, date of first appearance on web, update
frequency, etc.

• Aside: BM25 on its own doesn’t do that well. All these other features
are one huge difference between your project two and Bing.

Summary
• Here are some good summary papers and tutorials on LtR.

‣ A Short Introduction to Learning to Rank. Hang Li, 2011.

‣ Learning to Rank for Information Retrieval. Tie-Yan Liu, 2008.

‣ From RankNet to LambdaRank to LambdaMART: An
Overview. Christopher J.C. Burges, 2010.

‣ The whens and hows of learning to rank for web search.
Craig Macdonald, 2012.

‣ Yahoo! Learning to Rank Challenge Overview. Olivier
Chapelle, Yi Chang, 2011.

